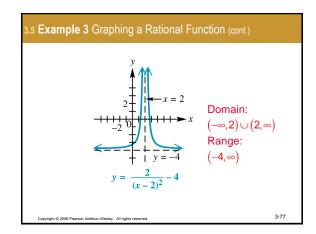
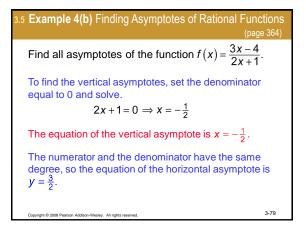
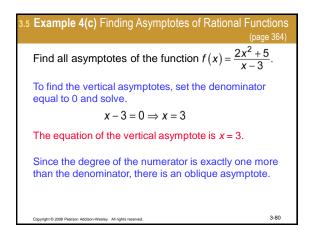


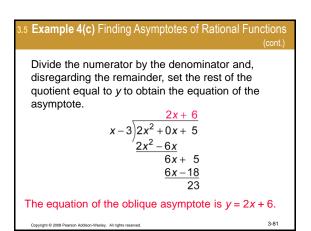
3-74


3.5 Example 3 Graphing a Rational Function (page 363)
Graph
$$f(x) = \frac{2}{(x-2)^2} - 4$$
. Give the domain and

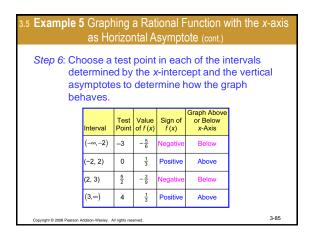
range.

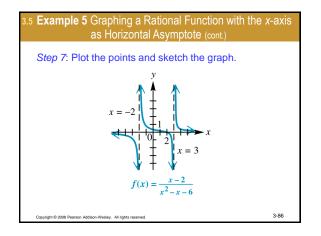

To obtain the graph of $f(x) = \frac{2}{(x-2)^2} - 4$, shift the graph of $f(x) = \frac{1}{x^2}$ two units to the right, stretch the graph vertically by a factor of two, and then shift the graph four units down.

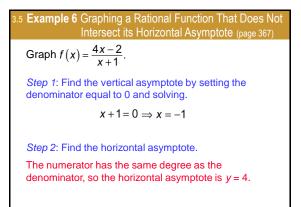

3-76


The vertical asymptote is x = 2. The horizontal asymptote is y = -4.

5 Example 4(a) Finding Asymptotes of Rational Functions Find all asymptotes of the function $f(x) = \frac{x+3}{x^2-16}$. To find the vertical asymptotes, set the denominator equal to 0 and solve. $x^2 - 16 = 0 \Rightarrow (x - 4)(x + 4) = 0 \Rightarrow x = \pm 4$ The equations of the vertical asymptotes are x = -4and x = 4. The numerator has lower degree than the denominator, so the horizontal asymptote is y = 0. 3-78 ght © 2008 Pearson Addison-Wesley. All rights re






3.5 Example 5 Graphing a Rational Function with the *x***-axis**
as Horizontal Asymptote (page 366)
Graph
$$f(x) = \frac{x-2}{x^2-x-6}$$
.
Step 1: Find the vertical asymptotes by setting the
denominator equal to 0 and solving.
 $x^2 - x - 6 = 0 \Rightarrow (x - 3)(x + 2) = 0 \Rightarrow x = 3 \text{ or } x = -2$
Step 2: Find the horizontal asymptote.
The numerator has lower degree than the
denominator, so the horizontal asymptote is $y = 0$.

3.5 Example 5 Graphing a Rational Function with the x-axis
as Horizontal Asymptote (cont.)

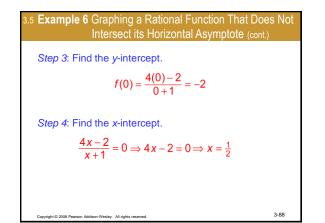
Step 3: Find the y-intercept.
$$f(0) = \frac{0-2}{0^2-0-6} = \frac{1}{3}$$

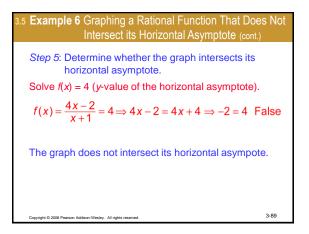
Step 4: Find the x-intercept.
 $\frac{x-2}{x^2-x-6} = 0 \Rightarrow x-2 = 0 \Rightarrow x = 2$

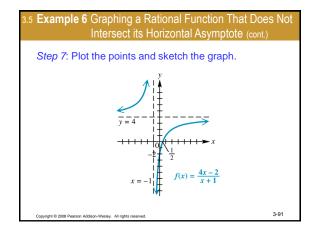
Capyright 0 2000 Person Address-Weelly. All rights reserved.

3-83

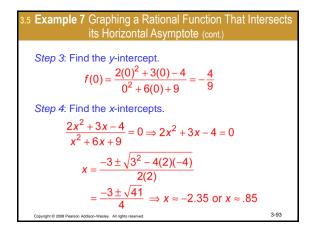
5 Example 5 Graphing a Rational Function with the as Horizontal Asymptote (cont.)	<i>x</i> -axis
Step 5: Determine whether the graph intersects its horizontal asymptote.	5
Solve $f(x) = 0$ (<i>y</i> -value of the horizontal asymptote).
Since the horizontal asymptote is the <i>x</i> -axis, the solution of this equation was found in Step 4. The graph intersects its horizontal asymptote at (2, 0).	
Capyright © 2008 Pearson Addison-Wesley. All rights reserved.	3-84

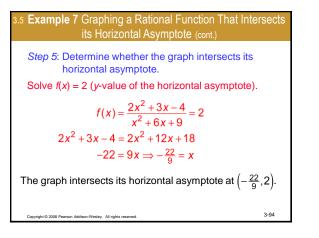


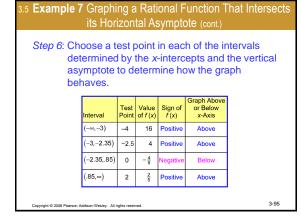


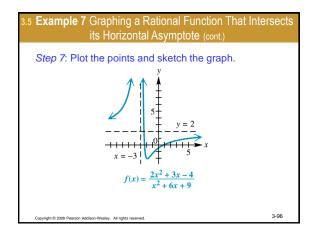

opyright © 2008 Pearson Addison-Wesley. All rights reserved.

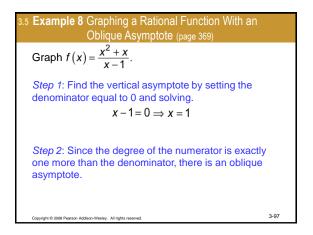
3-87

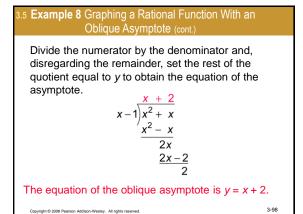


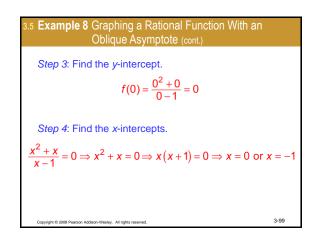

3.5 Example 6					Function T Il Asympto	hat Does Not ote (cont.)
asy	ermine	d by	the >	c-interc	th of the in ept and th ow the gra	ne vertical
	Interval	Test Point	Value of f (x)	Sign of $f(x)$	Graph Above or Below <i>x</i> -Axis	
	(–∞, –1)	-3	7	Positive	Above	
	$(-1, \frac{1}{2})$	0	-2	Negative	Below	
	$\left(\frac{1}{2},\infty\right)$	1	1	Positive	Above	
Copyright © 2008 Pearson A	idison-Wesley, A	ll rights res	erved.			3-90

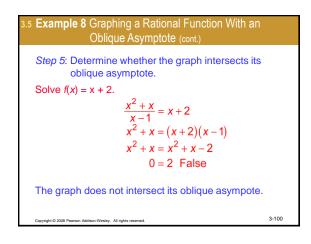


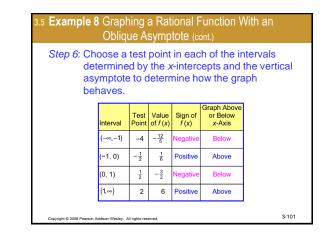

3.5 Example 7 Graphing a Rational Function That Intersects
its Horizontal Asymptote (page 368)
Graph
$$f(x) = \frac{2x^2 + 3x - 4}{x^2 + 6x + 9}$$
.
Step 1: Find the vertical asymptote by setting the
denominator equal to 0 and solving.
 $x^2 + 6x + 9 = 0 \Rightarrow (x + 3)^2 = 0 \Rightarrow x = -3$
Step 2: Find the horizontal asymptote.
The numerator has the same degree than the
denominator, so the horizontal asymptote is $y = 2$.

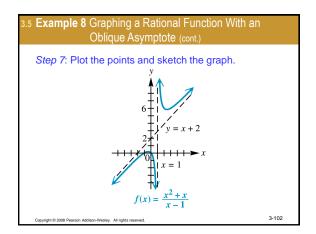

yright © 2008 Pearson Addison-Wesley. All rights res

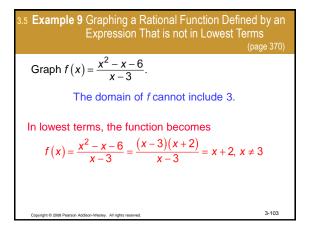


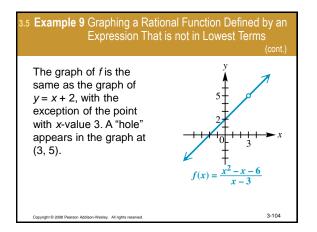


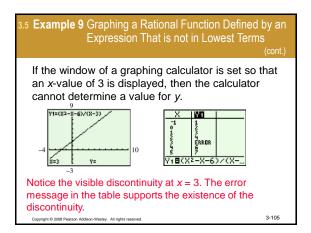


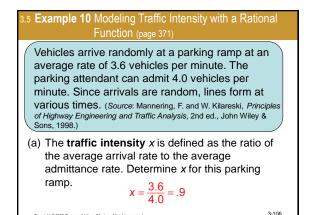




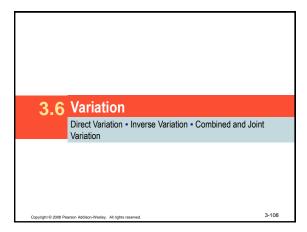








3.5 Example 10 Modeling Traffic Intensity with a Rational Function (page 371)


(b) The average number of vehicles waiting in line to enter the ramp is given by

$$f(x) = \frac{x^2}{2(1-x)}$$

where $0 \le x < 1$ is the traffic intensity. Compute the average number of vehicles waiting in line to enter the ramp.

$$f(.9) = \frac{x^2}{2(1-x)} = \frac{.9^2}{2(1-.9)} = 4.05$$

The average number of vehicles waiting in line to enter the ramp is 4.05.
Copyright 0 2008 Person Addron-Weeley, All rights reserved. 3-107

Example 1 Solving a Direct Variation Problem (page 380)

At a given average speed, the distance traveled by a vehicle varies directly as the time. If a vehicle travels 156 miles in 3 hours, find the distance it will travel in 5 hours at the same average speed.

Step 1: Since the distance varies directly as the time, **d** = **k**t.

Step 2: Substitute d = 156 and t = 3 to find k. $156 = k(3) \Rightarrow k = 52$

yright © 2008 Pearson Addison-Wesley. All rights reserved.

B.6 Example 1 Solving a Direct Variation Problem (cont.)

Step 3: The relationship between distance and time is *d* = 52*t*.

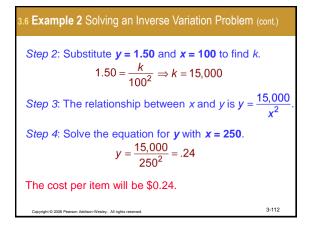
Step 4: Solve the equation for d with t = 5. d = 52(5) = 260

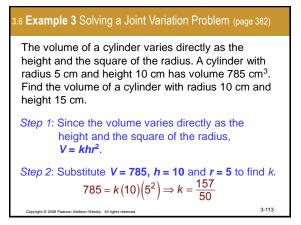
The vehicle will travel 260 miles in 5 hours.

3-110

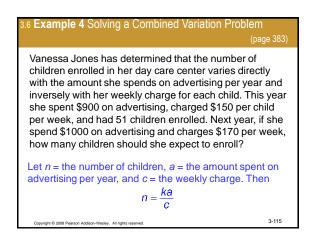
6 Example 2 Solving an Inverse Variation Problem

In a certain manufacturing process, the cost of producing a single item varies inversely as the square of the number of items produced. If 100 items are produced, each costs \$1.50. Find the cost per item if 250 items are produced.


Step 1: Let x represent the number of items produced and y represent the cost per item. y = k


$$y = \frac{\kappa}{x^2}$$

right © 2008 Pearson Addison-Wesley. All rights reserv


3-111

3-109

3.6 Example 3 Solving a Direct Variation Problem (cont.) Step 3: The relationship among the variables is $V = \frac{157}{50}hr^2$ Step 4: Solve the equation for V with h = 15 and r = 10. $V = \frac{157}{50}(15)(10^2) = 4710$ The volume of the cylinder is 4710 cm³.

3.6 Example 4 Solving a Combined Variation Problem (cont.) Substitute the given values for *n*, *a*, and *c* to determine *k*. $51 = \frac{900k}{150} \Rightarrow k = 8.5$ The relationship among the variables is $n = \frac{8.5a}{c}$. Solve the equation for *n* with *a* = 1000 and *c* = 170. $n = \frac{8.5(1000)}{170} = 50$ She should expect to enroll 50 children. Capyright 2008 Person Addison-Weeky. All rights resent.